If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5z^2-4z-8=0
a = 5; b = -4; c = -8;
Δ = b2-4ac
Δ = -42-4·5·(-8)
Δ = 176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{176}=\sqrt{16*11}=\sqrt{16}*\sqrt{11}=4\sqrt{11}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{11}}{2*5}=\frac{4-4\sqrt{11}}{10} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{11}}{2*5}=\frac{4+4\sqrt{11}}{10} $
| 2s-35=s+8 | | n/9+38=44 | | 116=2x-4 | | x-8/9=5 | | 2t+49=10t-71 | | 4(q-63)=72 | | 5+6m=89 | | 3t=9t-66 | | 8=j/4+5 | | 8(f+3)=48 | | 3+3i/5+3i=0 | | 2x-48=3x-86 | | 4t-24=2t | | 2x–48=3x–86 | | 2x+3=2x+29 | | -9(g-100)=18 | | 2/3=7/3x | | 4x-58=2x+72 | | q2+7=10 | | c+9=37c= | | 7+.75=12.50+.50x | | 90=50+10.5x | | 2s-92=s-15 | | 9y+y=80 | | 2+8m=-18 | | (6x+18)+(x+93)=90 | | 5p=10p=10p-15 | | n/44=8/11 | | 6a–6=3a+14 | | 12w-6+6=30+6 | | 6=1/4(b+12) | | 5p-54=3p |